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Overview

o Strongly coupled 2D and 3D shallow water and transport models
° Theory
> Applications

> Weakly coupled atmospheric, shallow water, and diffusive wave
models

o Application: Hindcasting flooding from Hurricane Harvey
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Primitive equations

o Partial differential equations governing flows in the atmosphere

and oceans

> Obtained from Reynolds-averaged Navier-Stokes by using scaling

arguments and Boussinesq assumption
> Solve for 3D velocities (u, v, w) & depth (h)/surface elevation (n)
> Apply in case of temperature/salinity variations (baroclinicity)

> Constituent transport equations are additionally included
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Primitive / 3D Shallow water equations
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+ Boundary and initial conditions

COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN



2D Shallow water equations

o Partial differential equations governing flows in rivers, estuaries

and oceans
> Solve for 2D velocities (u, V) & depth (h)/surface elevation(n)
> Apply where water is well-mixed (density variations are negligible)

> Constituent transport equations may be additionally included
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2D Shallow water equations
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+ Boundary and initial conditions
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2D/1D Diffusive wave equations

> Partial differential equations governing overland/surface flow in

watersheds
> Solve for 2D/1D velocities (u, 7)/(1) and depth (h)

> Apply in case of gentle land slope and low Froude number

(Fr = U/\/gh < 1)

> Constituent transport equations may be additionally included
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2D/1D Diffusive wave equations

2D DW EQUATIONS 1D DW EQUATIONS
6h+6hﬂ+6h17_0 6h+0hﬂ_0
ot oJx J0y ot 0ds
oh ob dh db B
dh  db B + Boundary and initial conditions
gay + gay + 5, =

+ Boundary and initial conditions
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3D/2D Advection-diffusion equations

o Partial differential equations governing transport of constituents in

a fluid

> Solve for 2D depth-averaged or 3D concentrations (¢, ¢)

> 3D transport equations required to capture baroclinicity, i.e.,

transport of salinity and temperature that affect density

> 2D depth-averaged equations not suitable for baroclinicity
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3D/2D Advection-diffusion equations

3D transport equations:

dc _
E+u-\7c—\7-(D3D\76)=O

2D depth-averaged transport equations:

ohe  _ ) - _
—— - Vop(he) =V - (DapPap(he)) = 0

+ Boundary and initial conditions

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN



Objective: Coupling

THE BEST OF ALL WORLDS
(OR THE WORST IF YOU DO NOT USE IT PROPERLY!)




Objectives

o Strongly coupled 2D and 3D shallow water and transport models
o Theory
o Test cases & applications

> Weakly coupled atmospheric, shallow water, and diffusive wave
models

o Application: Hindcasting flooding from Hurricane Harvey
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Motivation: 2D-3D SW, Trans. coupling

2D SW MODELS 3D SW MODELS

o Variety of ways to include wetting > Only a few o-coordinate based 3D
and drying; much easier than SW models have wetting and drying;
implementing in 3D extremely complicated and

computationally expensive

> Not applicable in baroclinic flows o Can capture baroclinic flows and

involving vertical mixing vertical mixing accurately
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Motivation: 2D SW - 2D/1D DW coupling

2D SHALLOW WATER 2D DIFFUSIVE WAVE
> Applicable for flow in oceans > Applicable for overland flow in
watersheds
> Computationally expensive: > Computationally cheaper:
Extremely small mesh size and Can be coupled to
time step required for flood groundwater/infiltration for

simulations flood simulations
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Why couple different models?

> Allows simulating complex phenomena that individual models may

not be able to handle

> Computationally cheaper when simplified models are used where
appropriately
> Saves time, effort, and money involved in developing new models

o Verification and validation are partly inherited
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Models
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Atmospheric model: NAM — Primitive Eq.

North American Mesoscale Forecast System (NAM) [1]

o Atmospheric model run by NCEP, NOAA

> Primitive equations, with non-hydrostatic effects and temperature transport
> NAM forecasts in grib2 format available for download every 6 hours

> Contiguous over the United States (CONUS) domain, 12 km grid
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NAM: CONUS domain

DASHED = EXPANDED NAM-12 § SOLID = GRID 211,212,215,218

NAM 12 km Lambert Conformal CONUS domain (solid line) [2]
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Hydrodynamic model: AdH — 3D/2D SW

Adaptive Hydraulics (AdH) [3]

> Software developed by ERDC, written in C programming language
> 3D and 2D shallow water (SW) and transport equations, among others
> Semi-discrete finite element method based code with SUPG stabilization

° First and second order implicit time stepping — backward difference formulas

[3] C. J. Trahan, G. Savant, R. C. Berger, M. Farthing, T. O. McAlpin, L. Pettey, G. K. Choudhary,
and C. N. Dawson. Formulation and application of the adaptive hydraulics three-dimensional

shallow water and transport models. Journal of Computational Physics, 374:47-90, 2018.
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Hydrologic model: GSSHA — 2D/1D DW

Gridded Surface Subsurface Hydrologic Analysis (GSSHA) [4]

o Software developed by ERDC, written in C++ programming language
> 2D and 1D diffusive wave (DW) and transport equations, among others
° Finite volume method based code

o Explicit time-stepping
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Approaches to coupling
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Strong/algebraic coupling

> Solve a monolithic coupled system of equations once every time step
o Guarantees solution continuity at all times
o Guarantees conservation across coupling interface at all times

> Best used when:
° Models are implemented within a single software

> Access to source code is available, and significant modifications are permitted

o Compatible discretization and time-stepping methods have been used
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Weak/flux coupling

° [terate between separate subsystems within each time step
> Allows subcycling, i.e., different models using different time step sizes
° Discontinuity in either solution or flux across coupling interface

> Best used when:
° Models are implemented in different software

o Little to no modification of source code allowed

° Incompatible discretization and time-stepping methods are being used
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Summary

> Atmospheric model: NAM, solution includes wind and rainfall
> 3D, 2D Shallow water models: AdH, solves for {h, u}/{h, u}

> 3D, 2D Transport models: AdH, solves for {c}/{c}

> 2D, 1D Diffusive wave models: GSSHA, solves for {h, q = hu}

> Objectives:

> 2D, 3D shallow water and transport coupling: Strong/algebraic

> Atmospheric, shallow water, diffusive wave coupling: Weak/flux
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2D-3D Coupled SWE:
Theory
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Adaptive Hydraulics — SW models

> AdH 2D SW and transport models:

o Unstructured mesh

° Linear triangular elements

> AdH 3D SW and transport models:

o Semi-structured mesh: Unstructured in horizontal (x, y) directions extruded

in the z direction, so that nodes are aligned vertically

° Linear tetrahedral elements and bilinear wedge elements

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN



AdH Shallow water models

2D model

3D model
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Strong coupling

> Assumptions:

> Conformity: Require interface nodes, faces, edges to be aligned vertically

° Interface placed in a region where physics is governed by 2D SW equations
> Method: Modify trial and test functions at the 2D-3D interface

> One trial/test function per coupled column of interface nodes

> Result:
> Generates a single coupled system of nonlinear equations

° Solution continuity, and mass and momentum conservation at all times
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Strong 2D-3D “

Coupling /////,,//,
ain Vi 61

Interface Nodes:

P = {12p,22p,32p} Interface‘

730 = {14p, 2ap, 33p, 4, ..., 9} 8

Coupled Node Columns:
C(12p) = {13p, 23p, 33p}
C(22p) =1{4,5,6}
C(32p) =17,8,9}
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Semi-discrete finite element method

Shallow water W Test function J oo-dimensional
equations J [ s SWEdQ =0 'L strong form

Integrate by parts
Jo-F foq-=0

Y
1°* order nonlinear 1 Restrict spaces ( oo-dimensional

diff. eq.s in time J‘ to finite subspaces weak form

Implicit finite
difference in time

Y

Nonlinear equations 1 Newton-Raphson Linearized equations
R(s) =0 J iterations 'L%—Ij B pglit1) — —R(s")

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN



Strong 2D-3D ;
Coupling

New trial functions (¢): 3D DO““B‘H1

¢1 = ¢12D U (¢13D + ¢23D + ¢33D) face: I'sD
Inter

G2 = Pz, U (Ps + Ps + @) 8 3D

¢3 = ¢P3,, U (P7 + g + Po)

Test functions: Analogous
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Strong 2D-3D
Coupling

New trial functions (¢ ¢FL):

(=12

CPL _ 2D 3D
(L= 93U Y ¢
=9

Or equivalently,

2D (x), x € 0?P
i=12

CPL(AN _
¢3 (%) = Z ¢i3D(x)»x c 3D
i=9

Wednesday, April 22, 2020
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2D-3D Coupled SWE:
Verification

SMALL AMPLITUDE SLOSH TEST CASE
REFERENCE [5]




Verification — small amplitude slosh test

> Domain: Q = (0,L)x(0,B)x(—H,0)

o [, = 25.6km,B = 6.4km, H = 82.5m, no friction, no viscosity
° Boundary conditions:

> No-flow across all vertical boundaries
o Initial conditions:

o Water at rest, i.e., u(x,y,z,0) = 0m/s

> Depth perturbation: Cosine wave of amplitude a,, = 0.01m, and wave-length 2L:

h(x,y,0) = H + a,, cos(mx/L)
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Verification — small amplitude slosh test

> Analytical solution to linearized SW equations available: Sinusoidal oscillations

> Not the true solution to the full nonlinear SW equations

o Comparison with full-2D and full-3D solutions and the analytical solution

> Comparison against finest mesh solution, mesh size 4 = 50m, At = 1s

> Convergence analysis with 4 = {6400,3200,1600,800,400,200,100}m
and At = {30,15,10,6,3,1}s

> Errors: ElinA against analytical solution, and E" against fine mesh solution
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Verification — slosh test case

To pdf file readers:

This slide contains an
animated gif that is not
available in this pdf file.
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Velocity error: Coarse mesh

Velocity error without SUPG terms for mesh 4: 4 = 800 m

8.OX1O_4 | I I
- | —¢ Full-2D B _ % - Full.2D Elnf
s —5—2D-3D: 2D Fj, - -3- 2D-3D: 2D E,™"
23 - 9p3D:i3D B -o- 9D-3D: 3D Bl
& P01 s PulsD £ --A - Full-3D EL™f

g 4.0 |
j‘; 3.0 |
So0lm B M __
ENIAYAYAY S
0.0 A A A A N
0 0.5 1

Time (hours)
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ine mesh

Velocity error without SUPG terms for mesh 7: A
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Temporal Convergence

SMALL AMPLITUDE SLOSH TEST CASE
REFERENCE [5]




Temporal convergence with SUPG terms

Small-amplitude Slosh: Temporal convergence with SUPG terms: Depth
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Temporal convergence with SUPG terms

Small-amplitude Slosh: Temporal convergence with SUPG terms: Velocity
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Spatial Convergence

SMALL AMPLITUDE SLOSH TEST CASE
REFERENCE [5]




Spatial convergence without SUPG terms

Small-amplitude Slosh: Spatial convergence without SUPG terms: Depth
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Spatial convergence without SUPG terms

Small-amplitude Slosh: Spatial convergence without SUPG terms: Velocity
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Spatial convergence with SUPG terms

Small-amplitude Slosh: Spatial convergence with SUPG terms: Depth
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Spatial convergence with SUPG terms

)
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Small-amplitude Slosh: Spatial convergence with SUPG terms: Velocity

) —
- < Full-2D Ef
. —5— 2D-3D: 2D Ef
. _o— 2D-3D: 3D Eft
. —a— Full-3D Ef

- % - Full-2D ELmnh
- [3- 2D-3D: 2D Einh _
-0 - 2D-3D: 3D Elnf

- B = =- -

Mesh size (m)

COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN

104




Spatial Convergence

LARGE AMPLITUDE SLOSH TEST CASE
REFERENCE [5]




Verification — large amplitude slosh test

> Everything same as before, except depth perturbation amplitude increased to

a, = 10.0m from 0.01m
o Advection dominated case
> Analytical solution no longer applies

> Expected convergence rate according to [6, 7] is 1.5
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Convergence: Large amplitude, SUPG
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Convergence: Large amplitude, SUPG

4/22/20

Large-amplitude Slosh: Spatial convergence with SUPG terms: Velocity
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Application

IDEALIZED ESTUARY WITH BAROCLINICITY AND WETTING-DRYING
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|dealized estuary - BC/IC

> Boundary conditions:

° Ocean surface elevation specified: n = 0.5m(1 — cos 2nt/T), where T = 1 day
o Salinity specified at western deep ocean boundary, set to 35%o

> Inflow of 29800m3 /s, salinity 1% in east specified, and no-flow everywhere else
o |nitial conditions:

o Water at rest, i.e., u(x,0) = Om/s

o Flat water surface, i.e., n(x,0) = Om

> Constant salinity, i.e., c(x,0) = 35%o
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To pdf file readers:
This slide contains an

‘dea‘lzed eStuary — SUu rface Ve‘OCIty animated gif that is not

available in this pdf file.

Surface x-velocity at model centerline along X-axis, from x=80km to x=100km; Time: Os

Time: Os
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To pdf file readers:
This slide contains an

‘dea‘lzed eStuary — SUu rface Sallnlty animated gif that is not

available in this pdf file.

Surface salinity at model centerline along X-axis, from x=80km to x=100km; Time: Os

Time: Os
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To pdf file readers:
This slide contains an

Wetting-drying + Baroclinic mixing  snimsteds that s not

available in this pdf file.

' Salinity (k .
TI m e : OS 0.000 5 10q mllt5y ( g2{qu n;5) 30 36.0
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3D Atmospheric, 2D SW
2D DW coupled models:
Application

HURRICANE HARVEY, AUGUST 2017/
ONE OF THE COSTLIEST HURRICANES TO HIT THE US




Harris County Watersheds
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Brays Bayou Watershed model

Rain (mm/hr)
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Galveston Bay model

Time: 604800s;

(m/s)

Wind Velocity Magnitude

Water Velocity Magnitude (m/s)

Wind velocity Water velocity
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NAM-AdH-GSSHA coupling

NAM: Outflow hydrograph at Brays Bayou at MLK Jr. Blvd, Houston, TX

o — |GrSSHAl-only; }llydra,ulilc slope ]|3C |
GSSHA-only; Constant depth BC
2 100 —6— One-way ADG coupling |
ci&/ —+— Two-way GDADG coupling
4% 1000 - o Usas gauge data
:
= 500
0z

Time (days)
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NAM: Rainfall during Harvey

40 NAM: Accumulated rainfall in different regions of Brays Bayou watershed
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HCFCD: Observed rainfall during Harvey

40 HCFCD: Observed accumulated rainfall over Brays Bayou watershed
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NAM-AdH-GSSHA coupling

NAM: Outflow hydrograph at Brays Bayou at MLK Jr. Blvd, Houston, TX

o — |GrSSHAl-only; }llydra,ulilc slope ]|3C |
GSSHA-only; Constant depth BC
2 100 —6— One-way ADG coupling |
ci&/ —+— Two-way GDADG coupling
4% 1000 - o Usas gauge data
:
= 500
0z

Time (days)
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Observations-AdH-GSSHA coupling

HCFCD: Outflow hydrograph at Brays Bayou at MLK Jr. Blvd, Houston, TX

2000 | | | | |
—x— GSSHA-only; Hydraulic slope BC
GSSHA-only; Constant de BC
1500 -
= —6— One-way ADG coupling
m& —— Two-way GDADG coupling
= 1000 |- o USGS gauge data
=
2
=~ 500 |

Time (days)

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN



Conclusion
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Conclusions

> 2D-3D strong coupling of shallow water and transport models
> Temporal convergence rates in line with theory: Optimal rate of 2

> Spatial convergence rates in line with theory:
> Optimal rate of 2 for negligible advection slosh test case
> Suboptimal rate of 1.25-1.5 for advection-dominated slosh test case
> 2D-3D coupled model solutions lie ‘between’ solely 2D and 3D

ones
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Conclusions

> Coupled models are not just viable, but needed

> 2D-3D coupled solution lies ‘between’” 2D and 3D solutions
o Salinity results of 3D submodels = 3D-only models
> Wetting-drying in 2D submodels = full-2D models

- 2D SW models coupled to 2D/1D DW models, driving by one-way
coupling from an atmospheric model

> More work needed: better atmospheric model, more BCs, and more V&V
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Future work

> More validation test cases OR theoretical guarantee needed

> How is the solution affected by the location and orientation of the

coupling interface?

> Dynamically moving coupling interface to switch regions to run

3D SW, 2D SW, or 2D DW

> 3D SW coupled to 2D SW coupled to 2D/1D coupled DW to 2D GW,

all driven by one-way coupling from an atmospheric model
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Additional Slides
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Proof summary

CONSERVATION OF MASS/MOMENTUM ACROSS 2D-3D INTERFACE




Strong 2D-3D “

Coupling /////,,//,
ain Vi 61

Interface Nodes:

P = {12p,22p,32p} Interface‘

730 = {14p, 2ap, 33p, 4, ..., 9} 8

Coupled Node Columns:
C(12p) = {13p, 23p, 33p}
C(22p) =1{4,5,6}
C(32p) =17,8,9}

Wednesday, April 22, 2020 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN 81



Example: Mass conservation

> Condition for mass conservation, for coupled node column {22°, 4, 5, 6}:

6
> To prove: f ¢, ht - Mypdl2P = —Z J¢iu-n3DdF3D

2D i=4 3D

° Proof uses: (h, @, ¥) op = (h,u,v) ... (choice of trial function)

F3D

G20 wp = (s + b5 + ¢6)|F3D .. (extrusion + conformity)

20| o = =M 4 ... (no gaps in the interface)

o Trivial after this. Momentum conservation likewise.
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Temporal Convergence

SMALL AMPLITUDE SLOSH TEST CASE
REFERENCE [1]




Temporal convergence without SUPG terms

Small-amplitude Slosh: Temporal convergence without SUPG terms: Depth
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Temporal convergence without SUPG terms

Small-amplitude Slosh: Temporal convergence without SUPG terms: Velocity
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Spatial Convergence

SMALL AMPLITUDE SLOSH TEST CASE
REFERENCE [1]




2D-3D Coupled SWE:
Verification

BAROCLINIC LOCK EXCHANGE TEST CASE




Lock exchange test

> Domain: Q = (0,L)x(0,B)x(—H,0)

oL =2m,B = 0.2m,H = 0.2m; simulation time 48s
° Boundary conditions:

> No-flow across all vertical boundaries
o Initial conditions:

o Water at rest, i.e., u(x,y,z,0) = 0m/s

> Constant water depth, i.e., h(x,y,0) = H = 0.2m

o Salinity discontinuity at the center; 30%o in one half, and 10%o. in the other
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Lock exchange test

To pdf file readers:

This slide contains an
animated gif that is not
available in this pdf file.
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Salt Concentration (kg/cu.m)
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Validation

EMERGENT SPUR DIKE IN A RECTANGULAR CHANNEL
REFERENCE [4]




Model

2D submodel 2

3D submodel

S
S
e e

=

ha Spur Dike
2D-3D-2D coupled model
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Validation — emergent spur dike

> Domain: Q = (0,37)mx(0,0.92)mx(—0.189,0)m
> Dike location: (14.00,14.03)mx(0,b = 0.152)mx(—0.189, oo)m
° Boundary conditions:

> No-flow across North and South vertical boundaries

> Inflow from East boundary, flow rate Q(t) = 0.0453m3/s

o Water depth fixed at the West boundary, h(L,y,0) = 0.189m
o Initial conditions:

o Water at rest and flat water surface, i.e., u(x,y,z,0) = 0m/s, n(x,y,0) = Om
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Streamlines

' &
Velocity Magnitude
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Validation - reattachment length

Eddy zone o Simulation result:
Reattachment length = 11.47b

Velocity Magnitude

0.05 0.15 0.2 0.25 0.3 0.35 4.0e-01 Ve/ocity in m/s

e ——— ' ‘ | U ee—
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Surface x-velocity profiles near the dike

Comparison of X-velocity near the bed, at z=0.03H, and x/b = 2
0.7

Comparison of X-velocity near the surface, at z = 0.85H, and x/b = 2
0.7
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Computed Computed
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Validation

PARTIAL-BREACH DAM-BREAK SCENARIO
REFERENCE [2]




Model

2D submodel
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Validation — dam break scenario

> Domain: Q = (—3,8.15)mx(—2.15,2.15)m
> Dam: (—0.15,0.15)mx(—2.15,2.15)m
> Gate: (—0.0015,0.0015)mx(—0.2, 0.2)m

° Boundary conditions:
o No-flow across all boundaries
o |nitial conditions:

o Upstream of gate: water at rest and flat water surface with depth h(x,y,0) = 0.5m

> Downstream of gate: dry bed
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To pdf file readers:
This slide contains an

Dam break SImU‘atlon animated gif that is not

available in this pdf file.

Full 2D model Coupled 2D-3D model

I Velocity Magnitude

0.0e+00 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 3.7e+00

m——— T e Time in s, velocity in m/s
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Hydraulic jump

Location of hydraulic oblique hydraulic jump at time t = 6.0s
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Application

GALVESTON BAY

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN



Galveston Bay - Bathymetry

Depth
10 15 2.1e+01

| _ (Scaled x100 times in the z-direction)
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Galveston Bay - meshes

Full-2D model (SM2D) 2D-3D coupled model (SM2D3D) 3D-only model (SM3D)
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Galveston Bay - BC/IC

> Boundary conditions:

° Ocean surface elevation specified: n = 0.5m(1 — cos 2nt/T), where T = 1 day
o Salinity specified at deep ocean, set to 35%o

> No-flow everywhere else
o Initial conditions:
o Water at rest, i.e., u(x,y,z,0) = 0m/s
o Flat water surface, i.e., n(x,y,z,0) = Om

o Salinity distribution specified
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To pdf file readers:
This slide contains an

GalVEStOﬂ Bay — SU rface Sa‘lnlty animated gif that is not

available in this pdf file.

Full 2D model (SM2D) 2D-3D coupled model (SM2D3D)

Salt_Concentration
0.0e+00 5 10 15 20 25 30 3.5e+01
|

E—— | ‘ o —— Time in s, salinity in kg/m?

3D-only model (SM3D)
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Thank You!
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