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Introduction
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Overview
◦ Strongly coupled 2D and 3D shallow water and transport models

◦ Theory

◦ Applications

◦ Weakly coupled atmospheric, shallow water, and diffusive wave 

models

◦ Application: Hindcasting flooding from Hurricane Harvey
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Primitive equations
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◦ Partial differential equations governing flows in the atmosphere 

and oceans

◦ Obtained from Reynolds-averaged Navier-Stokes by using scaling 

arguments and Boussinesq assumption

◦ Solve for 3D velocities (", $, %) & depth (ℎ)/surface elevation (()

◦ Apply in case of temperature/salinity variations (baroclinicity)

◦ Constituent transport equations are additionally included



+ Boundary and initial conditions

Primitive / 3D Shallow water equations
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2D Shallow water equations
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◦ Partial differential equations governing flows in rivers, estuaries 

and oceans

◦ Solve for 2D velocities ("#, &̅) & depth (ℎ)/surface elevation())

◦ Apply where water is well-mixed (density variations are negligible)

◦ Constituent transport equations may be additionally included



+ Boundary and initial conditions

2D Shallow water equations
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2D/1D Diffusive wave equations
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◦ Partial differential equations governing overland/surface flow in 

watersheds

◦ Solve for 2D/1D velocities !", %̅ / !" and depth (ℎ)
◦ Apply in case of gentle land slope and low Froude number

(Fr = ,/ .ℎ ≪ 1)

◦ Constituent transport equations may be additionally included



2D/1D Diffusive wave equations
2D DW EQUATIONS

+ Boundary and initial conditions

1D DW EQUATIONS

+ Boundary and initial conditions
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3D/2D Advection-diffusion equations
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◦ Partial differential equations governing transport of constituents in 

a fluid

◦ Solve for 2D depth-averaged or 3D concentrations ( ̅#, #)
◦ 3D transport equations required to capture baroclinicity, i.e., 

transport of salinity and temperature that affect density

◦ 2D depth-averaged equations not suitable for baroclinicity



3D transport equations:

2D depth-averaged transport equations:

+ Boundary and initial conditions

3D/2D Advection-diffusion equations
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Objective: Coupling

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN 12

THE BEST OF ALL WORLDS

(OR THE WORST IF YOU DO NOT USE IT PROPERLY!)



Objectives
◦ Strongly coupled 2D and 3D shallow water and transport models

◦ Theory

◦ Test cases & applications

◦ Weakly coupled atmospheric, shallow water, and diffusive wave 

models

◦ Application: Hindcasting flooding from Hurricane Harvey
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Motivation: 2D-3D SW, Trans. coupling
2D SW MODELS

◦ Variety of ways to include wetting 

and drying; much easier than 

implementing in 3D

◦ Not applicable in baroclinic flows 

involving vertical mixing

3D SW MODELS

◦ Only a few !-coordinate based 3D 

SW models have wetting and drying; 

extremely complicated and 

computationally expensive

◦ Can capture baroclinic flows and 

vertical mixing accurately
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Motivation: 2D SW - 2D/1D DW coupling
2D SHALLOW WATER

◦ Applicable for flow in oceans

◦ Computationally expensive: 

Extremely small mesh size and 

time step required for flood 

simulations

2D DIFFUSIVE WAVE

◦ Applicable for overland flow in 

watersheds

◦ Computationally cheaper:

Can be coupled to 

groundwater/infiltration for 

flood simulations
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Why couple different models?
◦ Allows simulating complex phenomena that individual models may 

not be able to handle

◦ Computationally cheaper when simplified models are used where 

appropriately

◦ Saves time, effort, and money involved in developing new models

◦ Verification and validation are partly inherited
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Models
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Atmospheric model: NAM – Primitive Eq.
North American Mesoscale Forecast System (NAM) [1]

◦ Atmospheric model run by NCEP, NOAA

◦ Primitive equations, with non-hydrostatic effects and temperature transport

◦ NAM forecasts in grib2 format available for download every 6 hours

◦ Contiguous over the United States (CONUS) domain, 12 #$ grid
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NAM: CONUS domain
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NAM 12 #$ Lambert Conformal CONUS domain (solid line) [2]



Hydrodynamic model: AdH – 3D/2D SW
Adaptive Hydraulics (AdH) [3]

◦ Software developed by ERDC, written in C programming language

◦ 3D and 2D shallow water (SW) and transport equations, among others

◦ Semi-discrete finite element method based code with SUPG stabilization

◦ First and second order implicit time stepping – backward difference formulas
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[3] C. J. Trahan, G. Savant, R. C. Berger, M. Farthing, T. O. McAlpin, L. Pettey, G. K. Choudhary, 

and C. N. Dawson. Formulation and application of the adaptive hydraulics three-dimensional 

shallow water and transport models. Journal of Computational Physics, 374:47-90, 2018.



Hydrologic model: GSSHA – 2D/1D DW
Gridded Surface Subsurface Hydrologic Analysis (GSSHA) [4]

◦ Software developed by ERDC, written in C++ programming language

◦ 2D and 1D diffusive wave (DW) and transport equations, among others

◦ Finite volume method based code

◦ Explicit time-stepping
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Approaches to coupling
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Strong/algebraic coupling
◦ Solve a monolithic coupled system of equations once every time step

◦ Guarantees solution continuity at all times

◦ Guarantees conservation across coupling interface at all times

◦ Best used when:

◦ Models are implemented within a single software

◦ Access to source code is available, and significant modifications are permitted

◦ Compatible discretization and time-stepping methods have been used
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Weak/flux coupling
◦ Iterate between separate subsystems within each time step

◦ Allows subcycling, i.e., different models using different time step sizes

◦ Discontinuity in either solution or flux across coupling interface

◦ Best used when:

◦ Models are implemented in different software

◦ Little to no modification of source code allowed

◦ Incompatible discretization and time-stepping methods are being used
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Summary
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◦ Atmospheric model: NAM, solution includes wind and rainfall

◦ 3D, 2D Shallow water models: AdH, solves for ℎ, # / ℎ, %#
◦ 3D, 2D Transport models: AdH, solves for & / ̅&
◦ 2D, 1D Diffusive wave models: GSSHA, solves for ℎ, ( = ℎ%#
◦ Objectives:

◦ 2D, 3D shallow water and transport coupling: Strong/algebraic

◦ Atmospheric, shallow water, diffusive wave coupling: Weak/flux



2D-3D Coupled SWE: 
Theory
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Adaptive Hydraulics – SW models
◦ AdH 2D SW and transport models:

◦ Unstructured mesh

◦ Linear triangular elements

◦ AdH 3D SW and transport models:

◦ Semi-structured mesh: Unstructured in horizontal (", $) directions extruded 

in the & direction, so that nodes are aligned vertically

◦ Linear tetrahedral elements and bilinear wedge elements
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AdH Shallow water models
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Goal: 2D-3D Estuaries
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Strong coupling
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◦ Assumptions:

◦ Conformity: Require interface nodes, faces, edges to be aligned vertically

◦ Interface placed in a region where physics is governed by 2D SW equations

◦ Method: Modify trial and test functions at the 2D-3D interface

◦ One trial/test function per coupled column of interface nodes

◦ Result:

◦ Generates a single coupled system of nonlinear equations

◦ Solution continuity, and mass and momentum conservation at all times



Strong 2D-3D 
Coupling
Interface Nodes:

ℐ"# = 1"#, 2"#, 3"#
ℐ)# = 1)#, 2)#, 3)#, 4, … , 9

Coupled Node Columns:

- 1"# = 1)#, 2)#, 3)#
- 2"# = 4, 5, 6
- 3"# = 7, 8, 9
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Semi-discrete finite element method
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Strong 2D-3D 
Coupling
New trial functions (!):

!" = !"$% ∪ !"'% + !)'% + !*'%
!) = !)$% ∪ !+ + !, + !-
!* = !*$% ∪ !. + !/ + !0

Test functions: Analogous
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Strong 2D-3D 
Coupling
New trial functions (!"#$):

!%"#$ = !%'( ∪ *
+,-

+,.'
!+%(

Or equivalently,

!%"#$ / =
!%'( / , / ∈ Ω'(

*
+,-

+,.'
!+%( / , / ∈ Ω%(
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2D-3D Coupled SWE: 
Verification
SMALL AMPLITUDE SLOSH TEST CASE

REFERENCE [5]
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Verification – small amplitude slosh test
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◦ Domain: Ω = 0, % × 0, ' × −), 0
◦ % = 25.6./,' = 6.4./,) = 82.5/, no friction, no viscosity

◦ Boundary conditions:

◦ No-flow across all vertical boundaries

◦ Initial conditions:

◦ Water at rest, i.e., 2(4, 5, 6, 0) = 0//9

◦ Depth perturbation: Cosine wave of amplitude :; = 0.01/, and wave-length 2%:

ℎ 4, 5, 0 = ) + :; cos B4/%



Verification – small amplitude slosh test
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◦ Analytical solution to linearized SW equations available: Sinusoidal oscillations

◦ Not the true solution to the full nonlinear SW equations

◦ Comparison with full-2D and full-3D solutions and the analytical solution

◦ Comparison against finest mesh solution, mesh size ! = 50%, Δ' = 1)
◦ Convergence analysis with ! = 6400, 3200, 1600, 800, 400, 200, 100 %

and Δ' = 30, 15, 10, 6, 3, 1 )

◦ Errors: 0123,! against analytical solution, and 40! against fine mesh solution



Verification – slosh test case
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Velocity error: Coarse mesh
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u

2D-3D: 3D Ẽh
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Velocity error: Fine mesh
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Temporal Convergence
SMALL AMPLITUDE SLOSH TEST CASE

REFERENCE [5]
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Temporal convergence with SUPG terms
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Temporal convergence with SUPG terms

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN 43

10�7

10�6

10�5

10�4

10�3

10�2

100 101

V
el

oc
ity

er
ro

r
(Ẽ
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Spatial Convergence
SMALL AMPLITUDE SLOSH TEST CASE

REFERENCE [5]
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Spatial convergence without SUPG terms
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Spatial convergence without SUPG terms
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Spatial convergence with SUPG terms
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h

2D-3D: 3D Ẽh
h

Full-3D Ẽh
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Spatial convergence with SUPG terms
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Spatial Convergence
LARGE AMPLITUDE SLOSH TEST CASE

REFERENCE [5]
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Verification – large amplitude slosh test
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◦ Everything same as before, except depth perturbation amplitude increased to 

!" = 10.0' from 0.01'

◦ Advection dominated case

◦ Analytical solution no longer applies

◦ Expected convergence rate according to [6, 7] is 1.5



Convergence: Large amplitude, SUPG
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Convergence: Large amplitude, SUPG
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Application
IDEALIZED ESTUARY WITH BAROCLINICITY AND WETTING-DRYING
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Idealized estuary – models
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Idealized estuary - BC/IC
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◦ Boundary conditions:

◦ Ocean surface elevation specified: ! = 0.5& 1 − cos 2-./0 , where 0 = 1 123
◦ Salinity specified at western deep ocean boundary, set to 35‰

◦ Inflow of 29800&7/8, salinity 1‰ in east specified, and no-flow everywhere else

◦ Initial conditions:

◦ Water at rest, i.e., 9(;, 0) = 0&/8
◦ Flat water surface, i.e., !(;, 0) = 0&
◦ Constant salinity, i.e., >(;, 0) = 35‰



Idealized estuary – surface velocity
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To pdf file readers:
This slide contains an
animated gif that is not
available in this pdf file.



Idealized estuary – surface salinity
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To pdf file readers:
This slide contains an
animated gif that is not
available in this pdf file.



Wetting-drying + Baroclinic mixing
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3D Atmospheric, 2D SW, 
2D DW coupled models: 
Application
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HURRICANE HARVEY, AUGUST 2017

ONE OF THE COSTLIEST HURRICANES TO HIT THE US



Harris County Watersheds

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN 60



Brays Bayou Watershed model
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Galveston Bay model
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NAM-AdH-GSSHA coupling

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN 63

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8 9

Fl
ow

ra
te

(m
3
/s

)

Time (days)

NAM: Outflow hydrograph at Brays Bayou at MLK Jr. Blvd, Houston, TX

GSSHA-only; Hydraulic slope BC

GSSHA-only; Constant depth BC

One-way adg coupling

Two-way gdadg coupling

USGS gauge data



NAM: Rainfall during Harvey
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HCFCD: Observed rainfall during Harvey
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NAM-AdH-GSSHA coupling
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Observations-AdH-GSSHA coupling
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Conclusion
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Conclusions
◦ 2D-3D strong coupling of shallow water and transport models

◦ Temporal convergence rates in line with theory: Optimal rate of 2

◦ Spatial convergence rates in line with theory:

◦ Optimal rate of 2 for negligible advection slosh test case

◦ Suboptimal rate of 1.25-1.5 for advection-dominated slosh test case

◦ 2D-3D coupled model solutions lie ‘between’ solely 2D and 3D 

ones
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Conclusions
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◦ Coupled models are not just viable, but needed

◦ 2D-3D coupled solution lies ‘between’ 2D and 3D solutions

◦ Salinity results of 3D submodels ≈ 3D-only models

◦ Wetting-drying in 2D submodels ≈ full-2D models

◦ 2D SW models coupled to 2D/1D DW models, driving by one-way 

coupling from an atmospheric model

◦ More work needed: better atmospheric model, more BCs, and more V&V



Future work
◦ More validation test cases OR theoretical guarantee needed

◦ How is the solution affected by the location and orientation of the 

coupling interface?

◦ Dynamically moving coupling interface to switch regions to run

3D SW, 2D SW, or 2D DW

◦ 3D SW coupled to 2D SW coupled to 2D/1D coupled DW to 2D GW, 

all driven by one-way coupling from an atmospheric model
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Thank You!
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Additional Slides
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Proof summary
CONSERVATION OF MASS/MOMENTUM ACROSS 2D-3D INTERFACE
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Strong 2D-3D 
Coupling
Interface Nodes:

ℐ"# = 1"#, 2"#, 3"#
ℐ)# = 1)#, 2)#, 3)#, 4, … , 9

Coupled Node Columns:

- 1"# = 1)#, 2)#, 3)#
- 2"# = 4, 5, 6
- 3"# = 7, 8, 9
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Example: Mass conservation
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◦ Condition for mass conservation, for coupled node column {22D, 4, 5, 6}:

◦ To prove:

◦ Proof uses: … (choice of trial function)

… (extrusion + conformity)

… (no gaps in the interface)

◦ Trivial after this. Momentum conservation likewise.

!
"#$

%&#$ℎ() * +&,-Γ&, = −1
234

5
!
"6$

%2) * +7,-Γ7,

8ℎ, :;, =̅
"#$

= 8ℎ, ;, =
"6$

8%&#$ "#$
= ( 8%4 + %@ + %5) "6$

8+&, "#$
= − 8+7, "6$



Temporal Convergence
SMALL AMPLITUDE SLOSH TEST CASE

REFERENCE [1]

4/22/20 COMPUTATIONAL HYDRAULICS GROUP | THE UNIVERSITY OF TEXAS AT AUSTIN 83



Temporal convergence without SUPG terms
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Temporal convergence without SUPG terms
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Spatial Convergence
SMALL AMPLITUDE SLOSH TEST CASE

REFERENCE [1]
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2D-3D Coupled SWE: 
Verification
BAROCLINIC LOCK EXCHANGE TEST CASE
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Lock exchange test
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◦ Domain: Ω = 0, % × 0, ' × −), 0
◦ % = 2+,' = 0.2+,) = 0.2+; simulation time 48/

◦ Boundary conditions:

◦ No-flow across all vertical boundaries

◦ Initial conditions:

◦ Water at rest, i.e., 0(2, 3, 4, 0) = 0+//
◦ Constant water depth, i.e., ℎ 2, 3, 0 = ) = 0.2+
◦ Salinity discontinuity at the center; 30‰ in one half, and 10‰ in the other



Lock exchange test
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To pdf file readers:
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animated gif that is not
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Validation
EMERGENT SPUR DIKE IN A RECTANGULAR CHANNEL

REFERENCE [4]
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Model
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Validation – emergent spur dike
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◦ Domain: Ω = 0, 37 '× 0, 0.92 '× −0.189, 0 '
◦ Dike location: 14.00, 14.03 '× 0, 0 = 0.152 '× −0.189,∞ '
◦ Boundary conditions:

◦ No-flow across North and South vertical boundaries

◦ Inflow from East boundary, flow rate 3(5) = 0.0453'7/9
◦ Water depth fixed at the West boundary, ℎ(;, <, 0) = 0.189'

◦ Initial conditions:

◦ Water at rest and flat water surface, i.e., =(>, <, ?, 0) = 0'/9, @(>, <, 0) = 0'



Streamlines
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Validation - reattachment length
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◦ Experiment: Reattachment length = 12$
(average value)

◦ Simulation result:

Reattachment length = 11.47$

Velocity in m/s



Surface !-velocity profiles near the dike
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Validation
PARTIAL-BREACH DAM-BREAK SCENARIO

REFERENCE [2]
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Model
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Validation – dam break scenario
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◦ Domain: Ω = −3, 8.15 *× −2.15, 2.15 *
◦ Dam: −0.15, 0.15 *× −2.15, 2.15 *
◦ Gate: −0.0015, 0.0015 *× −0.2, 0.2 *
◦ Boundary conditions:

◦ No-flow across all boundaries

◦ Initial conditions:

◦ Upstream of gate: water at rest and flat water surface with depth ℎ(0, 1, 0) = 0.5*
◦ Downstream of gate: dry bed



Dam break simulation
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Time in s, velocity in m/s

To pdf file readers:
This slide contains an
animated gif that is not
available in this pdf file.



Hydraulic jump
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Application
GALVESTON BAY
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Galveston Bay - Bathymetry
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(Scaled x100 times in the z-direction)



Galveston Bay - meshes
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Galveston Bay - BC/IC
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◦ Boundary conditions:

◦ Ocean surface elevation specified: ! = 0.5& 1 − cos 2-./0 , where 0 = 1 123
◦ Salinity specified at deep ocean, set to 35‰

◦ No-flow everywhere else

◦ Initial conditions:

◦ Water at rest, i.e., 5(7, 3, 9, 0) = 0&/;
◦ Flat water surface, i.e., !(7, 3, 9, 0) = 0&
◦ Salinity distribution specified



Galveston Bay – surface salinity
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Time in s, salinity in kg/m3

To pdf file readers:
This slide contains an
animated gif that is not
available in this pdf file.



Thank You!
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