Strongly coupled 2D & 3D shallow water models

G. Choudhary^a, C. Trahan^b, L. Pettey^c, M. Farthing^b, and C. Dawson^a

^a The University of Texas at Austin, Austin, TX

^b Engineering Research and Development Center, Vicksburg, MS

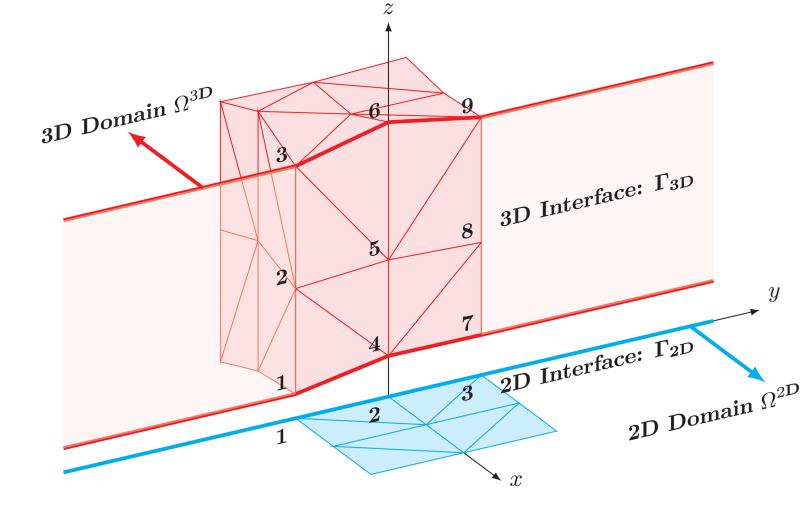
^c Engility Corporation, Lorton, VA

The University of Texas at Austin \$ A Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

FOR COMPUTATI **ENGINEERING & SCIENCES**

2D-3D Galveston bay case

• Neumann pressure BC with water


elevation $\eta = 0.5(1 - \cos 2\pi t/T) [m]$,

where T = 1 day, to simulate tides.

No flow Neumann BCs elsewhere.

Introduction

Most 3D shallow water (SW) models cannot handle wetting-drying (w/d), whereas there are over 10 methods for w/d in 2D SW models. We propose

using 'algebraically' or 'strongly' coupled 2D-3D shallow water models to take advantage of 2D w/d techniques and avoid implementation of 3D w/d. Mass and momentum conservation across the 2D-3D interface is guaranteed by strong coupling. Preliminary results for a 2D-3D Galveston Bay test case are given.

Fig. 1. Example of a coupled 2D-3D shallow water finite element model

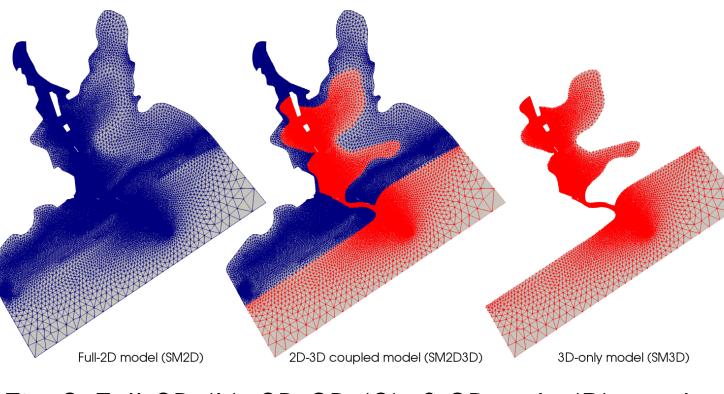
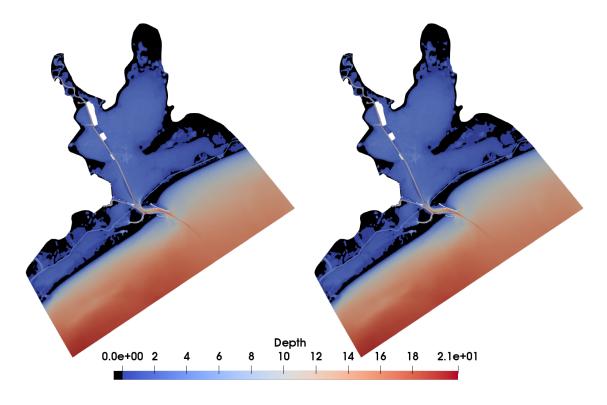



Fig. 2. Full-2D (L), 2D-3D (C), & 3D-only (R) meshes

Theory

<u>Assumptions</u>:

- Interface Location: Placed in a \bullet region governed by 2D SWE.
- Conformity: Nodes aligned vertically (as shown in Fig. 1.).

• ICs: $\eta(x, 0) = 0$, and u(x, 0) = 0.

Results

- W/d locations and extents (Fig. 3) within full-2D and 2D-3D models agree well.
- Outflow velocity jet extent and magnitude at Texas City Channel (Fig. 4) within 2D-3D and 3D-only models matches well.
- Elevations (Fig. 5) predicted by

2D-3D model are higher in this case.

Conclusions

Strongly/algebraically coupled 2D-3D SW models are a good alternative to

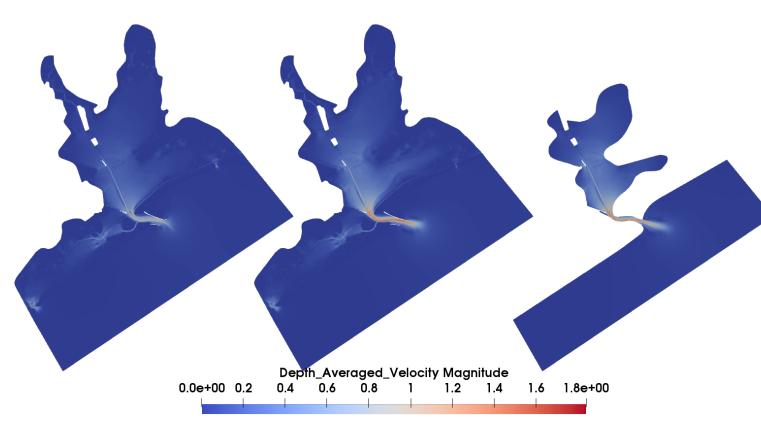
Interface constraints:

- Continuity in mass flux, and
- Continuity in momentum flux. ullet

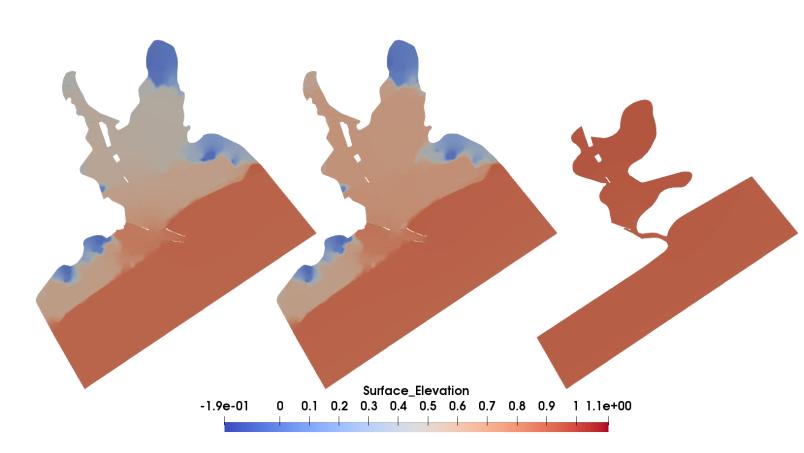
<u>Methodology</u>:

• Modify the interface trial (ϕ) & test (ψ) spaces. E.g., for node column $\{2^{2D}, 4, 5, 6\}$ in Fig. 1, set the new trial function, ϕ_2^{cpl} , as

$$\phi_2^{cpl}(\boldsymbol{x}) = \begin{cases} \phi_2^{2D}(\boldsymbol{x}), & \forall \boldsymbol{x} \in \Omega^{2D} \\ \sum_{4}^{6} \phi_i^{3D}(\boldsymbol{x}), \forall \boldsymbol{x} \in \Omega^{3D} \end{cases}$$


and likewise, the test function ψ_2^{cpl} .

• Conservation guaranteed.


Outcome:

- A single, large coupled system has

Fig. 3. Depth at time t=24 hrs.: *Full-2D (L) & 2D-3D (R) models*

Fig. 4. Depth avg. velocity at t=24 hrs.: Full-2D (L), 2D-3D (C), & 3D-only (R) models

Fig. 5. Surface elevation at time t=18 hrs.:

complex 3D w/d. Future work is to:

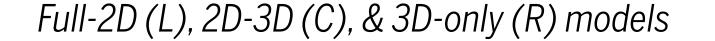
• Allow a velocity profile across the

2D-3D interface,

• Perform validation, convergence

and parallel scaling studies, and

• Simulate 2D-3D storm surges.


Reference

Choudhary, G.K. (2017). Algebraic coupling of 2D and 3D shallow water finite element models (Master's report). University of Texas at Austin.

Acknowledgments

This work was funded by the Department of Defense under the

