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Abstract—Automation in structural health monitoring has 

generated a lot of interest in recent years, especially with the 

introduction of cheap digital cameras. This paper presents 

fuzzy logic and artificial neural network based models for 

accurate crack detection on concrete. Features are extracted 

from digital images of concrete surfaces using image processing 

which incorporates the edge detection technique. The 

properties of extracted features are fed into the models for 

detecting cracks. Two kinds of approaches have been 

implemented in this study: the image approach which classifies 

an image as a whole, and the object approach which classifies 

each component or object in an image into cracks and noise. 

The models have been tested on 205 images and evaluated on 

the basis of five measures of performance. 

I. INTRODUCTION 

ANY of the world’s biggest and most important 

concrete structures are over decades old. As structures 

grow older, they grow weak and become prone to failures. 

Failure of high-rise buildings, dams, bridges, etc. results in 

tremendous loss of life and property, and hence, regular 

maintenance is required. Structural health monitoring, hence, 

has an important role to play during the operation phase of 

structures. Health monitoring also becomes a necessity 

during the construction phase for large-scale constructions. 

A need for automation has been felt over the years as a 

large portion of construction depends heavily upon proper 

management, and management requires special skills and 

expertise in the respective fields, increasing the cost of 

construction, maintenance, as well as the time consumed for 

structural health monitoring and inspection. Automation also 

becomes necessary for inaccessible regions of structures. As 

far as health monitoring is concerned, acquiring data and 

automating the analysis of this data can go a long way in 

reducing the skilled labor requirement and the time 

consumption, thus reducing the cost of maintenance. 

Automatic detection of cracks on various surfaces based 

on digital images is an area of active research. Most research 

in this field involves image processing and threshold based 

decision making. Tsao et al. (1994) [1] and Wang et al. 

(1998) [2] used this approach to detect defects in pavements. 

Kaseko et al. (1994) [3] implemented a neural network (NN) 

based model to classify pavement cracks which used crack 
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tiles for detecting cracks. 

Chae et al. (2001) [4] adopted a neuro-fuzzy approach to 

determine the health of sanitary sewer pipelines. The neural 

networks in the model were fed with pre-processed images 

as a whole and the networks identified the presence of 

various objects like cracks, joints etc. in the images and 

returned their attributes, which were then integrated using a 

fuzzy logic model to determine the overall health and 

condition of the pipes. 

Khanfar et al. (2003) [5] proposed a non-destructive test 

using wavelets for identifying cracks through changes in the 

reflection coefficient of a surface. A fuzzy logic model was 

developed which used the reflection coefficient, frequency 

of operation and standoff distance to estimate the crack 

width and depth. 

Byoung Jik Lee and Hosin “David” Lee (2004) [6] 

proposed crack classification based on crack tiles. Image-

based, histogram-based and proximity-based neural 

networks were developed and compared. 

A visual technique developed by Fujita et al. (2006) [7] 

involved preprocessing of images using subtraction of 

smooth images and a hessian matrix based line filter which 

then detected cracks by applying a threshold. This was 

further evolved by Fujita et al. (2009) [8] to include 

probabilistic relaxation and locally adaptive thresholding to 

improve the performance of the model. 

A neuro-fuzzy classifier was developed by Sinha et al. 

(2006) [9] which involved fuzzifying the input feature 

vectors of all the objects in an image and then feeding them 

into a neural network module to classify pipe defects. The 

features used were area, major axis length, minor axis 

length, projections and number of objects in an approach. 

Yagamuchi and Hashimoto (2008) [10] proposed a 

percolation-based model that considered the number of 

pixels and connectivity of the pixels to recognize cracks. . In 

this method, a central pixel was evaluated using a cluster 

generated by the percolation method. 

Hyeong-Gyeong Moon and Jung-Hoon Kim (2011) [11] 

proposed a neural network with 5 hidden layers with the 

inputs being area and major to minor axes ratios of all the 

objects in an image at a time to determine the presence of 

cracks. The object properties are determined after image 

processing involving techniques of subtraction processing, 

Gaussian filtering, thresholding, morphological closing, and 

labeling. 

In this research, an edge detection technique has been 

used instead of the subtraction processing and Gaussian 

filtering used in [11]. Four neural network models similar to 
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[11] have been trained, and the results hav

with those of [11], to compare the effect of 

processing method on the model performa

independent fuzzy logic model has also bee

tested. Finally, 20 independent neural netw

much lesser than and accuracies higher tha

have been developed, and their perform

compared with Fujita et al. [8]. The gene

crack recognition has been shown in Fig. 1. 

II. DATA ACQUISITION 

The data that was used for this research

total of 205 RGB images of various resolu

ratios. Most of the images were taken fro

Engineering Laboratory, Indian Institute 

Kharagpur, India, and some of the images w

from the internet using Google image search

The image of concrete should not contain

than concrete. Otherwise, due to the use o

technique, the models detect the edges of

cracks. Also, if the human eye itself canno

the image, neither can any of the models 

The crack has to be at least visible no m

noisy the surface of the concrete is, only the

detect cracks using these models. 

III. IMAGE PROCESSING 

Any image contains irrelevant extra in

needs to be removed by preprocessing 

process of crack recognition by making it m

time-saving. Various approaches in preproc

have been used till now, of which the follo

been adopted: 

A. Resizing 

All the images are resized to a size of 2

This step provides uniformity and saves co

at the cost of loss of some information in 

with the kind of crack detection models

developed till now, resizing the image is a 

models to work. 

B. RGB-Grayscale Image Conversion 

An image can be represented in term

components: red (R), green (G), and blue (

a RGB image is made up of an integer value

and B that lies between (and includes) 0 and

In grayscale images, each pixel is rep

single value between 0 and 255, where 0

black and 255 to white. This value indica

which each pixel lights up, or the lumin

pixel. The formula for conversion of imag

Fig. 1.  Basic steps involved in crack recognition. 
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 0.299   0.587 
 

The images are converted fro

grayscale after resizing them. This 

the effects of most of the color differ

C. Sobel Edge Detection 

This method of edge detection is 

of the gradient in an image. This o

wherever there is a steep gradient, 

luminance. 

A binary image is an image whic

or strictly white in color and can be

of 0’s and 1’s. All images are aut

binary images by MATLAB [12] wh

D. Morphological Operations 

Several morphological operation

the detected edges for noise reducti

of the cracks that appear fragment

Following are the steps involved: 

1) Close: This is the morpholo

small holes in the objects are fill

dilation followed by erosion. 

2) Bridge: Bridging sets ‘0’ valu

have two nonzero neighbors that are

useful operation as using edge detec

a fragmented crack. Some of these

then joined with this operation if th

other. 

This operation may also result

nearby objects that are noise, but th

that are fragmented far outweigh th

because joining results in a negligib

ratio whereas joining two cracks 

area and ratio of the objects, whic

accuracy of the models. 

3) Spur: This removes individu

diagonally connected at the border 

image, called ‘spur pixels.’ 

This process ends up removin

objects as well as noise, but the be

pixels from noise outweigh the dis

those from cracks because removin

much larger percentage-wise reduc

than of cracks. This, like bridging, is

4) Clean: This process conver

(single 1’s surrounded by 0’s) to ze

easiest to classify as noise, so this 

because it helps in noise reduction. 

of objects to be classified in the

approach) and saves computational t

E. Connected-Component Labeling

In this operation, all the connected

numbered serially. Labeling facilita

continuous, connected regions i.e., 

properties in the next step. 
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F. Object Properties 

The final step in image processing is to identify the object 

properties. These properties form the basis for crack 

detection using either fuzzy logic or neural networks. The 

choice of properties should be such that it enables and 

facilitates the differentiation between noise and cracks. 

Following are the properties chosen: 

1) Area: The area of any object in an image is the total 

number of pixels that make up the object. The reason behind 

choosing this property is that in general, the area of cracks is 

higher than the area of noise. 

2) Major-Minor Axes Ratio: The major and minor axes 

are the longest dimension of any object and the longest 

dimension perpendicular to the major axis at its midpoint 

such that the ellipse of these two dimensions as major and 

minor axes completely contains the given object. This 

property is chosen because the major-minor axes ratio is 

generally high for cracks as they are elongated whereas it is 

low for noise. 

IV. GENERAL APPROACH FOR MODEL DEVELOPMENT 

One needs to understand that crack detection is essentially 

a classification problem. An image or an object in an image 

is considered and classified as a crack or noise. Reference 

[11] considers all the objects in an image at a time and feeds 

their properties to a neural network of a very large size. If 

each object is considered one at a time instead of all the 

objects, the problem reduces to a simple two-class 

classification based on very few input parameters (here, just 

2 input parameters), thus drastically reducing the size of the 

neural network required and hence, the computational 

requirements and computational time. 

There are two ways to handle the detection of cracks. The 

first (‘Image approach,’ Section VI-A) involves feeding all 

the data in an image to a neural network and getting a single 

output ‘0’or ‘1’depending on whether the image has at least 

one crack or not. This has been done in [11], but the image 

processing methods of [11] are different from those in this 

research. The effect of a different image processing method 

on the model performance has been compared with [11]. 

The second way is to consider each object separately and 

classify it as crack or noise (‘Object approach’). This has 

been done for the fuzzy logic model (Section V) and another 

set of neural networks (Section VI-B). For testing of these 

models to be possible, one needs to first manually classify 

each object as a crack or noise, only then can the 

performance be evaluated. Since the 205 images chosen 

contain over 22000 objects in total, only the first 105 images 

have been chosen and the 12000 objects they contain have 

been manually classified as cracks or noise after visual 

inspection of the actual and processed images. 

Since output of any of the models in this research is a 

value between 0 and 1, a decision boundary or a threshold 

(α) has to be determined in order to convert the output to a 

binary value. The image is classified as having at least one 

crack or no cracks depending on whether the value crosses 

or does not cross α respectively. Twomey et al. (2005) [13] 

showed that choosing 0.5 as α may not lead to accurate 

classification. In order to determine an optimum α, the 

decision boundary is varied from 0.01 to 0.99 and the 

threshold for which the model performs the best is chosen. 

This is explained in Section VII. 

V. FUZZY LOGIC MODEL 

Fuzzy logic, introduced by L. A. Zadeh [14] in 1965 has 

found quite a place in modern industry as well as research. It 

is one of the few methodologies which are intuitive and can 

easily be understood by a layman since it uses easily 

understood linguistic variables. 

For the fuzzy logic model, the input variables are ‘Area’ 

and ‘Ratio’ whereas the output variable is the ‘Class’ of the 

object. The range of each variable is between ‘0’ and ‘R’ as 

shown in Fig. 3 and Table I. Each variable is made up of 2 

or more fuzzy subsets and corresponding membership 

functions. The membership functions used are trapezoidal – 

3 for ‘Area,’ 2 for ‘Ratio,’ and 2 for the output variable 

‘Class.’ The membership functions have been chosen after 

 
Fig. 3.  Representation of Trapezoidal Membership Functions 

    
        (a)               (b)             (c)             (d) 

Fig. 2.  (a) The original image after conversion to grayscale. (b) Feature extraction using edge detection technique. (c) Labeled image. (d) Detected crack. 



 

 

 

plotting graphs of Ratio v/s Area, studying the relation 

between them and after trying various membership function 

intervals. It has been found that even though certain intervals 

of the subsets give a higher accuracy of prediction of at least 

one crack in an image, the overall number of cracks detected 

is lesser than some other ranges of the subsets of ratio. In 

this case, the detection of more number of cracks has been 

preferred over the image-wise crack detection accuracy of 

the model. The trapezoidal membership functions used can 

be represented by the four values ‘a,’ ‘b,’ ‘c,’ and ‘d’ as 

shown in Fig. 3, and their values have been given in Table I. 

In the formulation of the fuzzy logic model, the Mamdani 

fuzzy inference system [15] has been used. Fuzzy inference 

rules are comprised of ‘IF-THEN’ statements, the ‘IF’ part is 

referred to as ‘antecedent’ whereas the ‘THEN’ part is called 

the ‘consequent.’ The antecedents can be combined by the 

fuzzy operators ‘AND,’ ‘OR,’ and ‘NOT.’ For this model, 

only the ‘AND’ operator is required. This operator uses the 

minimum weight or membership value of all the antecedents 

to restrict the membership value of the consequent to lie 

below this value. The rules have been given in Table II. A 

Mamdani ‘min’ operator [16] is used as the implication. The 

output of each rule is then aggregated by the ‘max’ operator 

which assigns the maximum occurring membership value in 

any of the rules to each of the output subsets (in this case, 

‘noise’ and ‘crack’) at each point in the domain. Lastly, 

‘centroid’ defuzzification is used, that is, the centroid of the 

aggregated fuzzy output is the crisp output. 

The crisp output has a value between 0 and 1, and is 

converted into a binary value using a decision boundary as 

explained in Section VII. The best model performance is at a 

threshold of 0.68 with an image-wise accuracy of 94.29%. 

VI. NEURAL NETWORK MODELS 

Two kinds of approaches have been implemented for the 

neural network models. The first one (‘Image approach’) 

involves feeding the area and ratio of all the objects of an 

image in the neural network and getting a single output – 1 

or 0 depending on whether the image has cracks or not, 

respectively. The second approach (‘Object Approach’) 

involves feeding the area and ratio of only one object at a 

time to a neural network and getting a single output, 

classifying that object as a crack or noise. 

Feed-forward back-propagation algorithm is used for 

training all the networks with training function ‘trainscg’ 

(scaled conjugate gradient) and learning function ‘learngdm’ 

[17]. The activation function is the log-sigmoid function. 

The networks are validated using the train-test-validation 

technique with a set of 105 (out of 205) images being 

divided into the three sets in the ratio of 0.7:0.15:0.15. The 

maximum number of epochs is set to 10000, and 

overtraining is prevented by stopping the training process of 

the networks when the error for the validation set increases 

for 30 consecutive iterations. Root mean square error 

(RMSE) is the error metric used in this study. Each neural 

network architecture is trained 50 times and the one with the 

least RMSE is selected. 

A. Image Approach 

In this approach, the object properties are sorted in the 

descending order of their areas. Since the number of objects 

is different for different images and the number of inputs to 

the neural network is fixed, for the sake of consistency, the 

sorted areas and major-minor axes ratios of only the top 50 

objects in an image are given as the input to a multilayer 

neural network and it is determined if the image as a whole 

contains at least one crack or not. If an image has less than 

50 objects, the rest of the input to the network is assigned 

‘0.’ Since each object is defined by two parameters, the 

input layer has a total of 50x2 = 100 nodes. There is a single 

output node with output ‘1’ meaning the image has at least 

one crack and output ‘0’ referring to an image without any 

crack. The number of hidden layers and number of hidden 

neurons has been varied, and the best architecture for a given 

number of hidden layers has been reported. 

A neural network with 5 hidden layers (200-5-5-5-5-5-1 

architecture) has been adopted in [11]. In this study, 4 types 

of neural networks containing 3, 4, 5, and 6 hidden layers 

respectively have been developed for comparison with [11]. 

Due to computational constraints, for a given number of 

hidden layers, the nodes in each of the hidden layers are kept 

equal and are varied in multiples of 5. The best networks 

selected on the basis of RMSE for 3, 4, 5, and 6 hidden layer 

networks are 100-50-50-50-1, 100-10-10-10-10-1, 100-5-5-

5-5-5-1, and 100-5-5-5-5-5-5-1 respectively. 

The decision boundary has to be selected on the basis of 

the image-wise accuracy after varying the threshold, and the 

best selected thresholds are 0.32, 0.41, 0.44 and 0.70 for 3, 

4, 5, and 6 layer networks respectively. 

B. Object Approach 

In this approach, each object is classified individually as a 

crack or noise on the basis of its area and major-minor axes 

ratio. This reduces the problem to a two class classification 

problem in a two dimensional feature space. The input layer 

TABLE II 
FUZZY INFERENCE RULES 

Rule 
No. 

Area Ratio Class 

1 High High Crack 

2 High Low Crack 
3 Moderate High Crack 

4 Moderate Low Noise 

5 Low High Noise 
6 Low Low Noise 

Example: IF ‘Area’ is ‘High’ AND Ratio is ‘High,’   

     THEN ‘Class’ is ‘Crack.’ 

TABLE I 

MEMBERSHIP FUNCTIONS FOR THE FUZZY LOGIC MODEL 

Variable 

Variable 

Range 
(R) 

Member-

ship 
Function 

Trapezoid definition 

a b  c d 

Area 5000 

Low 0 0 50 100 

Moderate 50 100 150 500 
High 150 500 5000 5000 

Ratio 200 
Low 0 0 4.5 5.5 

High 4.5 5.5 200 200 

Class 1 
Noise 0 0 0.45 0.55 
Crack 0.45 0.55 1 1 
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can make the model biased towards noise. A
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can be seen from Fig. 4, almost all the cra

imaginary line 6 60 360. This line 

at the approximate boundary between the re

the transition region through visual inspect

have been explained in Section VIII-B.) He

set is created by including 100% of the 

noise lying above the line and 7.5% of al

below the given line. This is so because the

noise in the low area and low major to 

region is very high compared to the rest of t
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after considering the 5 measures of mo

(explained in Section VII). The interpre

similar to the one used in the image approac

the threshold is then performed by varying

0.99 and two thresholds of 0.71 and 0.83 ha

VII. EXPERIMENTAL RESUL

Following are the measures of accuracy

(wherever applicable): 

 Images correctly Total number o
 Objects correctly Total number of

Fig. 4.  Ratio v/s Area plot: The line drawn is the
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e hidden layer is 
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B. Performance of Neural Network Models 

For the 4 neural networks based on image approach 

(Section VI-A), the sensitivity, specificity, precision, and 

object-wise accuracy cannot be checked as the models 

classify the image as a whole instead of the objects. Hence, 

the thresholds are varied and the best model is selected using 

only the image-wise accuracy of the model. These come out 

to be 0.32, 0.41, 0.44 and 0.70 for 3, 4, 5, and 6 layer 

networks with accuracies of 90.48%, 87.62%, and 87.62%, 

and 92.38% respectively for 105 images. 

For the 20 neural networks in the object approach (Section 

VI-B), the best neural network of 2-13-1 architecture has 

been first chosen after considering the variation of the 5 

measures of performance of the networks with a variation in 

the number of hidden nodes for various thresholds, one of 

which (threshold = 0.5) has been given in Table IV. For this 

network, the threshold is then fine-tuned and two network 

thresholds, one based on a reasonable sensitivity and good 

image-wise accuracy (threshold = 0.71), and one based on 

highest image-wise accuracy (threshold = 0.83) have been 

suggested in Table V. 

C. Comparison with Earlier Work 

It has been observed that sensitivity, specificity and 

precision alone (as reported in [8]) are not enough for the 

evaluation of the model performance, as is evident from the 

results given in Table VI. The threshold can be chosen in 

such a way that the sensitivity, specificity, and the precision 

of the model are comparable to that of [8]. For such a 

threshold, the number of objects that are noise, but have 

been wrongly classified as cracks, increases without a 

significant decrease in the specificity due to the extremely 

high number of objects that are noise. Hence, for such 

thresholds, the image-wise accuracy goes down significantly 

as more images which do not have any cracks get classified 

incorrectly. This can be seen for the 2-13-1 architecture 

neural network model in Table VI where the sensitivity, 

specificity, and precision are comparable to those reported in 

[8], but the model itself does not perform well since the 

image-wise accuracy is much lower at 73.33% than the best 

suggested model which has an accuracy of 96.19%. 

On the contrary, for a higher threshold of 0.83 for the 

TABLE V 
ACCURACY OF NEURAL NETWORK WITH ‘2-13-1’ ARCHITECTURE 

FOR DIFFERENT VALUES OF THRESHOLD 

Thres-

hold 

Sensit-

ivity 

Speci-

ficity 

Precis-

ion 

Image-wise 

Accuracy 

Object-wise 

Accuracy 

0.65 0.5462 0.9975 0.8161 0.8857 0.9884 

0.66 0.5462 0.9975 0.8161 0.8857 0.9884 

0.67 0.5423 0.9975 0.8150 0.8857 0.9884 
0.68 0.5385 0.9977 0.8284 0.8952 0.9885 

0.69 0.5308 0.9980 0.8466 0.9048 0.9887 

0.70 0.5269 0.9980 0.8457 0.9048 0.9886 
0.71 0.5269 0.9981 0.8509 0.9143 0.9887 

0.72 0.5231 0.9982 0.8553 0.9238 0.9887 

0.73 0.5115 0.9983 0.8581 0.9238 0.9885 
0.74 0.5077 0.9983 0.8571 0.9238 0.9884 

0.75 0.5000 0.9983 0.8609 0.9238 0.9884 

0.76 0.4962 0.9984 0.8658 0.9238 0.9884 
0.77 0.4885 0.9984 0.8639 0.9238 0.9882 

0.78 0.4885 0.9985 0.8699 0.9238 0.9883 

0.79 0.4885 0.9987 0.8819 0.9333 0.9884 
0.80 0.4808 0.9987 0.8865 0.9429 0.9884 

0.81 0.4808 0.9988 0.8929 0.9524 0.9884 

0.82 0.4692 0.9988 0.8905 0.9524 0.9882 
0.83 0.4538 0.9990 0.9008 0.9619 0.9881 

0.84 0.4462 0.9991 0.9063 0.9619 0.9880 

0.85 0.4423 0.9991 0.9055 0.9524 0.9879 

Suggested Thresholds for the 2-13-1 Neural Network Architecture: 

0.71 0.5269 0.9981 0.8509 0.9143 0.9887 

0.83 0.4538 0.9990 0.9008 0.9619 0.9881 

TABLE IV 

VARIATION OF THE 5 ACCURACY MEASURES WITH THE NUMBER OF 

HIDDEN NODES IN THE NEURAL NETWORK MODELS FOR THRESHOLD = 0.5 

No. of 

hidden 
nodes 

Sensit-

ivity 

Speci-

ficity 

Precis-

ion 

Image-wise 

Accuracy 

Object-wise 

Accuracy 

1 0.1923 0.9997 0.9259 0.8667 0.9835 
2 0.2692 0.9991 0.8642 0.8952 0.9845 

3 0.5692 0.9959 0.7400 0.8286 0.9874 

4 0.5731 0.9960 0.7450 0.8286 0.9875 
5 0.5615 0.9966 0.7725 0.8571 0.9879 

6 0.5731 0.9966 0.7760 0.8476 0.9881 

7 0.5615 0.9965 0.7684 0.8667 0.9878 
8 0.5808 0.9965 0.7704 0.8571 0.9881 

9 0.5654 0.9962 0.7538 0.8286 0.9876 

10 0.5577 0.9974 0.8146 0.8952 0.9886 
11 0.5731 0.9965 0.7680 0.8571 0.9880 

12 0.5577 0.9970 0.7923 0.8762 0.9882 
13 0.5808 0.9966 0.7784 0.8667 0.9883 

14 0.5769 0.9964 0.7653 0.8667 0.9880 

15 0.5731 0.9969 0.7884 0.8762 0.9884 
16 0.5769 0.9965 0.7692 0.8571 0.9881 

17 0.5615 0.9966 0.7725 0.8667 0.9879 

18 0.5654 0.9969 0.7903 0.8571 0.9883 
19 0.5731 0.9964 0.7641 0.8571 0.9879 

20 0.5615 0.9969 0.7892 0.8762 0.9882 

Best architecture ‘2-13-1’ is selected on the basis of highest sensitivity. 

TABLE III 

ACCURACY OF FUZZY MODEL FOR DIFFERENT VALUES OF THRESHOLD 

Thres-
hold 

Sensit-
ivity 

Speci-
ficity 

Precis-
ion 

Image-wise 
Accuracy 

Object-wise 
Accuracy 

0.20 1.0000 0.0000 0.0200 0.5714 0.0200 

0.30 0.5962 0.9943 0.6798 0.8000 0.9863 
0.40 0.5423 0.9967 0.7705 0.8476 0.9876 

0.50 0.5038 0.9976 0.8086 0.8762 0.9877 

0.60 0.4654 0.9981 0.8345 0.9048 0.9874 
0.70 0.4115 0.9985 0.8492 0.9429 0.9868 

0.80 0.0000 1.0000 ∞a 0.4286 0.9800 

0.61 0.4615 0.9982 0.8392 0.9143 0.9874 

0.62 0.4538 0.9982 0.8369 0.9143 0.9873 
0.63 0.4500 0.9982 0.8357 0.9143 0.9872 

0.64 0.4423 0.9983 0.8456 0.9333 0.9872 
0.65 0.4346 0.9983 0.8433 0.9333 0.9871 

0.66 0.4308 0.9983 0.8421 0.9333 0.9870 

0.67 0.4269 0.9984 0.8473 0.9333 0.9870 
0.68 0.4192 0.9984 0.8450 0.9429 0.9868 

0.69 0.4115 0.9985 0.8492 0.9429 0.9868 

0.70 0.4115 0.9985 0.8492 0.9429 0.9868 
0.71 0.4115 0.9985 0.8492 0.9429 0.9868 

0.72 0.4038 0.9986 0.8537 0.9429 0.9867 

0.73 0.4000 0.9986 0.8525 0.9429 0.9866 
0.74 0.3962 0.9986 0.8512 0.9429 0.9865 

0.75 0.2577 0.9990 0.8375 0.8857 0.9841 

Suggested model threshold and corresponding accuracy: 

0.68 0.4192 0.9984 0.8450 0.9429 0.9868 

Accuracy has been reported for 105 images which have also been used 

to train the neural networks. 
aAll objects are classified as noise resulting in a zero in the denominator 

in (6) and hence, the infinite precision. 



 

 

 

neural network architecture ‘2-13-1’ given in Table V, the 

sensitivity drops down to a seemingly low value of about 

45%, but the image-wise accuracy increases to 96%. It is 

important to note that this is because during image 

processing, some of the cracks get fragmented during the 

edge detection step. A part of these fragments may get 

classified as cracks and the remaining part as noise (whereas 

all such fragments are classified as cracks during the manual 

classification of the 12000 objects in the 105 images), thus 

resulting in reduced sensitivity. 

Hence, from the two examples mentioned above, a 

seemingly low sensitivity (especially for the models 

developed in this research) does not imply that the model is 

inaccurate whereas a very high sensitivity along with 

specificity as high as 99% does not imply that the model is 

accurate. 

The last step in this research is to test the developed 

models on a completely different set of images. This has 

been done on 100 new images. Sensitivity, specificity, 

precision, and object-wise accuracy have not been measured 

as they require manually classifying all the objects in all the 

images (which amount to nearly 10000 in these 100 images) 

as cracks or noise. Hence, only the image-wise accuracy has 

been checked and reported in Table VII. It can be inferred 

from the comparison with the results of [11] in Table VII 

that edge detection performs as good as other approaches 

such as median subtraction, Gaussian filter etc. 

VIII. DISCUSSION 

A. Image Processing 

It should be noted is that all the models developed in this 

research are valid exclusively when the resized resolution of 

the image is 256 x 256 pixels. The membership functions in 

the fuzzy logic model will have different ranges and new 

neural networks will have to be trained if the resized 

resolution of the image is different from the chosen one. 

The main problem in image processing is that some of the 

cracks get fragmented into 2 to 3 smaller objects, resulting in 

a smaller area and ratio and thus, resulting in a wrong 

detection of some of the fragments as noise which in turn 

results in the reduction of the sensitivity of the model. A 

better way of joining these fragments needs to be 

implemented than the ‘bridging’ step mentioned in Section 

III-D, because bridging joins objects separated by only a 

single pixel whereas the crack fragments may be separated 

by as many as 10 pixels. 

Lastly, the edge detection technique ends up detecting 

drastic color changes as edges – hence, it is suggested that 

instead of directly converting the image into a grayscale one 

and using edge detection, the three components R, G, and B 

should also be used separately along with the grayscale 

image to detect cracks. (Note that in an RGB image, if we 

take only one of the three of R, G, or B components, we get 

an image similar to a grayscale image.) 

B. Object Parameters 

The Ratio v/s Area plot can be roughly divided into 3 

regions – the first region is where objects are certainly 

cracks, the second is where objects are certainly noise and 

the third is the transition region between the former two 

regions. When the object properties lie in the former two 

regions, it is fairly easy to classify them, and as expected, 

almost all the incorrect classifications lie in the transition 

region. 

Basically, what we are feeding the neural network in the 

object approach is the area-ratio plot during training, and 

then asking it to classify a new object. Indeed, if the area-

ratio plot were to be given to a human, the person would not 

be able to classify the object based on just the area and ratio 

when the area-ratio point of the object is in the transition 

region. It is possible that area and ratio alone are not good 

enough to determine whether an object is a crack or noise, 

since the sensitivity of all the models is low. Hence, we need 

at least one more parameter to correctly differentiate cracks 

from noise even in the transition region. It may be possible 

that for an additional parameter (say circularity [10]), the 

transition region between that parameter and area or ratio is 

different from the transition region of area and ratio. Such a 

parameter would then enable one to increase the sensitivity 

of the model significantly (though the increase in image-

wise accuracy would not be high). 

C. Accuracy 

The accuracies of the models have been measured in five 

ways: the number of images detected correctly (image-wise 

accuracy), the number of objects detected correctly (object-

wise accuracy), sensitivity, specificity, and precision. 

It should be noted that neither the image-wise accuracy, 

nor the object-wise accuracy is an entirely correct measure 

of the accuracy of the models. In the approach using image-

wise accuracy, if an image has multiple cracks, then even if 

only a single crack out of many in the image is detected, or 

even if noise is wrongly classified as a crack for that image, 

the image may still be correctly classified as one having a 

crack, but for a wrong reason. In the second approach of 

TABLE VII 

IMAGE-WISE ACCURACY FOR FINAL TESTING WITH 100 IMAGES AND 

COMPARISON WITH MOON ET AL. [11] 

Approach 

Type 
Model Threshold 

Image-wise  

% Accuracy 

Image 3 Hidden Layer NN 0.32 87.00 

Image 4 Hidden Layer NN 0.41 86.00 

Image 5 Hidden Layer NN 0.44 85.00 
Image 6 Hidden Layer NN 0.70 93.00 

Object ‘2-13-1’ NN 0.83 96.00 

Object Fuzzy Logic Model 0.68 94.00 

Image NN of [11] - 90.25 

TABLE VI 

COMPARISON OF RESULTS WITH FUJITA ET AL. [8] WITH THE 
PROPOSED ‘2-13-1’ ARCHITECTURE NEURAL NETWORK MODEL 

Thres-
hold 

Sensit-
ivity 

Speci-
ficity 

Precis-
ion 

Image-wise 
Accuracy 

Object-wise 
Accuracy 

Sample threshold for the proposed model: 

0.25 0.792 0.989 0.592 0.733 0.985 

Best results reported by Fujita et al. [8]: 

- 0.722 0.993 0.655 Global Thresholding 

- 0.815 0.922 0.147 Local Thresholding 

- 0.805 0.992 0.631 Probabilistic Relaxation 

 



 

 

 

object-wise accuracy, the accuracy of the model is extremely 

high (98.81% for 2-13-1 architecture, Table V) because most 

of the objects are noise which is relatively easy to detect 

whereas the number of cracks is very few, giving a false 

impression that the model performance is good. At the same 

time, just reporting the sensitivity, specificity and precision 

is also not enough as can be seen from the explanation in 

Section VII-C and Table VI. 

Hence, all the 5 measures should be taken into account 

while evaluating the performance of any crack detection 

model. It should be noted that one may need to compromise 

on one of the measures to choose the best model, as can be 

seen from the difference in accuracies of the 2-13-1 network 

for two different thresholds given in Table V. Hence, one 

needs to fine-tune the model to suit the needs of the situation 

using different choices of threshold. For example, when one 

needs a high sensitivity and is ready to compromise slightly 

on the image-wise accuracy, one may choose a threshold of 

0.3 for the fuzzy model, or if a one needs a high image-wise 

accuracy and needs to detect at least one crack in a given 

image, then one may use the suggested threshold of 0.68 for 

the fuzzy model (as is evident from Table III). 

IX. CONCLUSION 

A fuzzy logic model and various neural networks for 

detecting cracks and noise in images based on image and 

object approaches were developed and compared in this 

research. The performance of the models that used feature 

extraction based on edge detection was compared with 

earlier work in this field, and it was found that edge 

detection performs just as good as median subtraction, low 

pass Gaussian filter, etc., and that the object approach is 

better than the image approach. It was also found that neural 

networks outperform the fuzzy logic model in all measures 

of model performance. It is suggested that while reporting 

the performance of any model for crack detection, the 5 

measures of accuracy from (2) to (6) should be considered 

together. 

ACKNOWLEDGMENT 

We would like to thank Prof. S. V. Barai for introducing 

the concepts of fuzzy logic and neural networks to us and for 

his support and guidance throughout the project. We also 

wish to thank Venkatesh S., Ved M., and Prerit Varun for 

their contribution to our work. 

REFERENCES 

[1] S. Tsao, N. Kehtarnavaz, P. Chan, and R. Lytton, “Image-based 

expert-system approach to distress detection on CRC pavement,” 

Journal of Transportation Engineering, vol. 120, no. 1, pp. 62–64, 
January - February 1994. 

[2] K. C. Wang, S. Nallamothu, and R. P. Elliott, “Classification of 

pavement surface distress with an embedded neural net chip,” 
Artificial Neural Networks for Civil Engineers: Advanced Features 

and Applications,  pp. 131–161, January-February 1998. 

[3] M. S. Kaseko, Z. P. Lo, and S. G. Ritchie, “Comparison of traditional 
and neural classifiers for pavement-crack detection,” Journal of 

Transportation Engineering, vol. 120, no. 4, pp. 552–569, July - 

August 1994. 
[4] Chae M., and Abraham D., (2001). ”Neuro-Fuzzy Approaches for 

Sanitary Sewer Pipeline Condition Assessment.” Journal of 

Computing in Civil Engineering 15, Special issue: Information 

technology for life-cycle infrastructure management, Pages 4–14. doi: 
10.1061/(ASCE)0887-3801(2001)15:1(4). 

[5] Aws Khanfar, Mohammed Abu-Khousa, and Nasser Qaddoumi, 

“Microwave near-field non-destructive detection and characterization 
of disbonds in concrete structures using fuzzy logic techniques,” 

Composite Structures, Volume 62, Issues 3–4, Pages 335-339, ISSN 

0263-8223, 10.1016/j.compstruct.2003.09.033, 2003. 
[6] Byoung Jik Lee, and Hosin “David” Lee, “Position-Invariant Neural 

Network for Digital Pavement Crack Analysis,” Computer-Aided Civil 

and Infrastructure Engineering, Volume 19, Issue 2, pages 105–118, 
March 2004. 

[7] Y. Fujita, Y. Mitani and Y. Hamamoto, “A Method for Crack 

detection on a Concrete Structure,” 18th International Conference on 
Pattern Recognition, Volume 3, pp. 901–904, 2006. 

[8] Y. Fujita, and Y. Hamamoto, “A robust method for automatically 

detecting cracks on noisy concrete surfaces,” Next-Generation Applied 
Intelligence. 22nd International Conference on Industrial, Engineering 

and Other Applications of Applied Intelligent Systems IEA/AIE 2009, 

pp. 76–85, June 2009, Tainan, Taiwan. 
[9] S. K. Sinha, P. W. Fieguth, and M. A. Polak, “Computer vision 

techniques for automatic structural assessment of underground pipes,” 

Computer-Aided Civil and Infrastructure Engineering, vol. 18, no. 2, 
pp. 95–112, February 2003. 

[10] T. Yamaguchi, and S. Hashimoto, “Improved percolation-based 

method for crack detection in concrete surface images,” 19th 
International Conference on Pattern Recognition, December 2008. 

[11] H. Moon, and J. Kim, “Inteligent Crack Detecting Algorithm On The 
Concrete Crack Image Using Neural network,” Proceedings of the 28th 

ISARC, Pages 1461-1467, Seoul, Korea, 2011. 

[12] The MathWorks, Inc., Image Processing Toolbox for Use with 
MATLAB: User’s Guide, August 2004. 

[13] J. M. Twomey and A. E. Smith, “Validation and Verification,” 19th 

Artificial Neural Networks for Civil Engineers: Fundamentals and 
Applications, Chapter 4. January 2005. 

[14] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-

353, 1965. 
[15] J. -S. R. Jang and N. Gulley, MATLAB Fuzzy Logic Toolbox: User’s 

Guide, April 1997. 

[16] E. H. Mamdani, "Applications of Fuzzy Set Theory to Control 
Systems: A Survey," in Fuzzy Automata and Decision Processes, M. 

M. Gupta, G. N. Saridis and B. R. Gaines, eds., North-Holland, New 

York, pp. 1-13, 1977. 
[17] M. H. Beale, M. T. Hagan and H. B. Demuth, Neural Network 

ToolboxTM: User’s Guide, September 2012. 


